	Open Elective		
	Advanced C Programmi	ng Lah	
Course Code	UCS559L/659L	CIE Marks	50
TeachingHours/Week (L:T:P)	0-2-2	SEE Marks	50
Credits	2	Hours	24
The objective of the course	is to:		
• Imbibe thorough kno	wledge in advanced C program	nming concepts.	
• Have proficiency in a	pplying advanced C program	ming concepts to solve a	ny real
world problem.			
Unit -1 (6 hours)			
Multidimensional arrays. Sel	f-referential structures and Ur	nions. Pointers: Introduc	tion,
Pointers for inter function co	mmunication, Pointers to poir	nters,	
Revised Bloom's L_1 - RememberTaxonomy Level L_6 - Creating	ring, L_2 – Understanding, L_3 – App	plying, L_4 – Analyzing, L_5 – 1	Evaluating,
UNIT- II (6 hours)			
Pointer Applications: Array	vs and pointers, pointer arithm	etic and arrays, passing a	in array to a
function, memory allocation	functions, array of pointers, E	xamples.	
Data Structures, Data structu	re Operations,	-	
-	erations, Array Representation	n of Stacks.	
Revised Bloom's L_1 - RememberTaxonomy Level L_6 - Creating	ring, L_2 – Understanding, L_3 – Ap	plying, L_4 – Analyzing, L_5 –	Evaluating,
UNIT- III (6 hours)			
Stacks using Dynamic Array Queue Operations. Program	s, Stack Applications: Queues ning Examples.	: Definition, Array Repre	esentation,
Revised Bloom's L_1 – RememberTaxonomy Level L_6 – Creating	ring, L_2 – Understanding, L_3 – Ap	plying, L_4 – Analyzing, L_5 –	Evaluating,
UNIT- IV (6 hours)			
<u>`````````````````````````````````````</u>	presentation of linked lists in	Memory, Linked list ope	erations:
	ion, and Deletion. Application		
Revised Bloom's L_1 – Remember Taxonomy Level L_6 – Creating	ring, L_2 – Understanding, L_3 – Ap	plying, L_4 – Analyzing, L_5 –	Evaluating,

Course outcomes:

By the end of the course, the student will be able to:

- 1. Define advanced C programming concepts like pointers, data structures.
- 2. Apply the knowledge of advanced C programming concepts to implement given requirement specification or to solve real world problem.
- 3. Analyze different data structures and use suitable data structure to implement requirement specification.
- 4. Implement, interpret, debug and test any given advanced C program.
- 5. Develop software product using advanced C programming concepts to solve real world problem.

SI No	Title of the Book	Name of the Author/s Name of the Publisher		Edition and Year
Text	books		•	·
1		0.11 0.5		
1	Data Structures: A Pseudo- code approach with C	Gilberg&Foro uzan	Cengage Learning	2 nd Edition, 2014
2	Data Structures through C	Yashwant Kanetkar	BPB Publications	2017
Refe	rence Books			
			1	
1	Data Structures: A Pseudo-	Gilberg&Foro	Cengage	2 nd Edition, 2014
	code approach with C	uzan	Learning	
2	Data Structures using C	Reema Thareja	Oxford press	3 rd Edition 2012
3	An Introduction to Data	Jean-Paul	McGraw-Hill	2 nd Edition,2013
	Structures with Applications	Tremblay &		
		Paul G.		
Wah	links and Video Lectures:			
	s://nptel.ac.in/courses/106/106/10	6106130/		
	s://www.classcentral.com/course/		ng-pointers-and-memory-	nanagement-11533
-	s://academicearth.org/computer-s		<u>s pointero una memory r</u>	
_	//nptel.vtu.ac.in/econtent/courses			

	Part A							
1	Write C program to accept and display 1D array Also write functions.							
	• to insert an element based at the specified position							
	• to delete element based on the position							
	• to delete based on the value							
	function should take care of invalid data and accordingly display appropriate error messages.							
2	Write C program to accept and display 2d array of user specified size. Also write functions to							
	perform the following on the 2d array							
	• Function row_sum that takes row number as parameter and returns the sum of the row							
	• Function col_sum that takes column number as parameter and returns the sum of the column							
	 Function secondary _diagonal_sum that returns the sum of secondary diagonal 							
	elements if possible else should return -1							
	 Function primary_diagonal_sum that returns the sum of primary diagonal elements if 							
	possible else should return -1							
3.	Write C program to swap two integers using function.							
4.	Write C program to accept and display 1d array.Use external pointer to process the array.Use							
	separate functions to							
	Accept the array elementsDisplay the array elements in forward direction							
	 Display the array elements in reverse direction 							
	 To compute the average of the elements in the array 							
5.	Write C program to store information(name,employee_id,designation,date of birth,stay details) about set of employees in a company. Here designation is string that can takeone of these							
	values {md, manager, clerk, peon} date of birth is a structure for holding birth date with							
	fields day,month, year stay detail is a structure that contains street number and sector number							
	and house number details.Writeseparate functions to accept & display the employees.							
	Part - B							
	 Write C program to implement stack of integers using array. Wrte C program to implement linear queue of integers using array. 							
	 Write C program to create & display singly linked list of integers. 							
	4. Write C program to implement stack using linked list.							
	5. Write C program to implement queue using linked list.							

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO	PSO1	PSO2	PSO3											
	~	1	2	3	4	5	6	7	8	9	10	11	12			
	Programme Outcomes															
No	Course Outcomes															
The	students will be able to:															
1	Define advanced C programming															
	concepts like pointers, data															
	concepts like pointers, data			1												
	structures.															
2	Apply the knowledge of advanced															
	C programming concepts to															
	implement given requirement		2	2										3		
	specification or to solve real															
	world problem.															
3	Analyze different data structures															
	and use suitable data structure to															
		1	3	3									2	3		1
	implement requirement	1	5										2	5		1
	specification.															
	-															
4	Implement, interpret, debug and															
	test any given advanced C		3	3									2	3		2
	program.															
5	Develop software product using															
	advanced C programming															
	concepts to solve real world		3	3	3								3	3		3
	problem															